
Eur. Phys. J. D 41, 589–598 (2007)
DOI: 10.1140/epjd/e2006-00265-1 THE EUROPEAN

PHYSICAL JOURNAL D

Maximum confidence measurements and their optical
implementation

S. Croke1,2,a, P.J. Mosley3, S.M. Barnett1, and I.A. Walmsley3

1 Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
2 Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK
3 Clarendon Laboratory, Oxford University, Parks Road, Oxford, OX1 3PU, UK

Received 19 June 2006 / Received in final form 5 October 2006
Published online 8 December 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. Perfect discrimination between non-orthogonal states is forbidden by the laws of quantum me-
chanics. Several strategies to discriminate optimally between states of an arbitrary set exist, and many of
these have been implemented in experiments using optical polarisation. In this paper we discuss maximum
confidence measurements and their recent optical implementation.

PACS. 42.50.Xa Optical tests of quantum theory – 03.67.Hk Quantum information

1 Introduction

In classical mechanics, a system is described by variables
such as position and momentum, which can in principle be
measured arbitrarily accurately to obtain complete infor-
mation about the state of the system. Thus, when classi-
cal systems are used to carry information, it is possible, at
least in theory, to distinguish perfectly between any given
set of signal states, although in reality a noisy signal may
make this impracticable. In quantum mechanics however,
the state of a system is not itself an observable. Further-
more, the act of measuring a quantum system changes
the state, destroying the information previously contained
therein. As a consequence, the accuracy with which it is
possible to discriminate between states of an arbitrary set
is limited by fundamental laws of quantum mechanics.

Perfect discrimination is possible only when the sig-
nal states form a mutually orthogonal set. However, there
are certain advantages to be gained in exploiting quan-
tum effects arising from the use of non-orthogonal signal
states. For example, cryptographic protocols using non-
orthogonal states are provably secure against attack by
eavesdroppers [1,2]. Also, the information carrying capa-
bility for certain noisy channels is maximised by using
non-orthogonal states [3]. It is important therefore, to un-
derstand how to discriminate optimally between states of
an arbitrary set [4]. Optimality, of course, lies in the eye of
the beholder. It requires a criterion against which the sys-
tem performance can be judged. For example, is it worse
to get a wrong answer or miss a right one? Possibly the
simplest definition of optimality is a measurement which
minimises the probability of incorrectly identifying the
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state [5–7]. However, error-free or unambiguous discrimi-
nation is possible between two non-orthogonal states, if we
are prepared to accept the possibility of an inconclusive
result [8]. This strategy can be extended to larger numbers
of states [9], but is only applicable to linearly independent
sets [10]. It has recently been shown however, that an anal-
ogous strategy — one which achieves maximum confidence
that when a state is identified it was indeed present — is
possible for linearly dependent states [11]. Other defini-
tions of optimal outcomes include maximising the mutual
information shared by the receiving and transmitting par-
ties [12,13], and maximising the fidelity between the state
received and one transmitted on the basis of the measure-
ment result [14,15] as well as minimising the a posteriori
probability of error [16]. Variants on the quantum state
discrimination problem have also been considered, includ-
ing assigning the state of a system to one of two comple-
mentary subsets of a set of non-orthogonal states [17], and
the special case where one of the subsets contains a single
state, known as quantum state filtration [17–19].

Experimental demonstrations of optimal strategies to
date have predominantly used the polarisation state of
light as a two-level system or qubit [20]. This is largely
due to the relative ease with which polarisation states
can be created and manipulated in the laboratory using
readily available linear optical components. One alterna-
tive is the construction of a multi-level optical system by
making use of different ports of a multi-rail interferom-
eter [18]. This approach, which also uses linear optical
elements to manipulate input states, was used to demon-
strate unambiguous discrimination between three non-
orthogonal states, and between a pure and a mixed state
in three dimensions [21]. Examples of optimal minimum
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error, mutual information, and unambiguous discrimina-
tion measurement strategies have been demonstrated in
experiments on optical polarisation [22–26]. We have re-
cently implemented a maximum confidence measurement
between three equiprobable symmetric qubit states in this
way [27]. In this paper we will discuss maximum con-
fidence measurements and their optical implementation.
The remainder of the paper is organised as follows. In
Section 2 we discuss how the maximum confidence mea-
surement is constructed, and compare it to other strate-
gies. In Section 3 we present our experimental design and
its implementation. We discuss the experimental results
and sources of error in Section 4, before concluding in
Section 5.

2 Maximum confidence measurements

In quantum state discrimination, it is usually assumed
that both the set of possible states {ρ̂i}, and the a priori
probabilities {pi} that each state is prepared are known,
although this is not always the case [28]. The prob-
lem then is to choose the measurement to determine
best which state was actually prepared. A conventional,
von Neumann measurement gives outcomes corresponding
to one of a set of mutually orthogonal states. The number
of outcomes is therefore restricted by the dimensions of the
state space of the system. More general measurements are
possible however, and any measurement in quantum me-
chanics can be described mathematically by a probability
operator measure (POM) [5], also known as a positive op-
erator valued measure [29]. Thus the optimisation can be
cast as a purely mathematical problem whose convex na-
ture allows globally optimal solutions to be found. In the
POM formalism, measurement results {ωi} are associated
with operators {Π̂i}, which completely specify the mea-
surement. The operator Π̂j is defined by the probability
of occurence of the associated measurement result

P (ωj |ρ̂) = Tr(ρ̂Π̂j) (1)

for a measurement on a system in state ρ̂. In order to form
a physically realisable measurement, these operators must
be non-negative, and satisfy a completeness condition:

Π̂i ≥ 0,
∑

i

Π̂i = Î. (2)

Although in general the result of a measurement will not
reveal with certainty which state was prepared, it does
provide information which allows us to modify our de-
scription of the state via Bayes’ rule. Thus if outcome
ωj is obtained, the probability distribution for the input
states {ρ̂i} becomes:

P (ρ̂i|ωj) =
P (ρ̂i)P (ωj |ρ̂i)

P (ωj)
=

piTr(ρ̂iΠ̂j)
Tr(ρ̂Π̂j)

(3)

where ρ̂ =
∑

i piρ̂i. Thus this represents the information
we now have about the state given knowledge of the mea-
surement result ωj. It is usual to associate each input state

with a particular measurement result, so that when result
ωj is obtained, we take this to imply that the state of the
system was ρ̂j . The probability that we are correct to do
so is the quantity

P (ρ̂j |ωj) =
pjTr(ρ̂jΠ̂j)
Tr(ρ̂Π̂j)

, (4)

and is maximised by the maximum confidence measure-
ment. This conditional probability is therefore interpreted
as our confidence in identifying state ρ̂j as a result of ob-
taining outcome ωj . Before discussing how the maximum
confidence measurement is constructed, it is worth com-
menting that, having identified this conditional probabil-
ity as a quantity of interest, there are still several opti-
mality conditions which may be applied to form distinct
measurement strategies. Note that the average of this
quantity, over all measurement outcomes, is given by:

Pcorr =
∑

j

P (ωj)P (ρ̂j |ωj) =
∑

j

P (ρ̂j)P (ωj |ρ̂j), (5)

and represents the overall probability of correctly iden-
tifying the state, the figure of merit maximised by the
minimum error measurement. Another possibility is to
maximise the smallest value of P (ρ̂j |ωj) for a given set
of states, i.e. apply a worst-case optimality condition [16].
The maximum confidence measurement however, opti-
mises this probability for each state in a set independently.
Thus, for each input state ρ̂j , we look for the positive op-
erator Π̂j which maximises the conditional probability in
equation (4). The operators {Π̂j} are treated as indepen-
dent, essentially relaxing the completeness condition in
equation (2). The result of this is that ultimately an incon-
clusive outcome may be needed in order to form a physi-
cally realisable measurement, but the remaining outcomes
each achieve the maximum possible value of P (ρ̂j |ωj) for
the corresponding state ρ̂j . Thus whenever outcome ωj is
obtained, we can be as confident as possible that ρ̂j was
indeed prepared. Note that as the operator Π̂j appears in
the denominator and the numerator, it can only be de-
termined up to an arbitrary multiplicative factor. These
factors can always be chosen such that Π̂? ≥ 0, where

Π̂? = Î −
∑

j

Π̂j (6)

is the POM element corresponding to the inconclusive re-
sult. Thus the problem is reduced to finding the positive
operator Π̂j which maximises the right hand side of equa-
tion (4).

As pointed out in [11], a closed-form solution for an
arbitrary set of states is made possible by the ansatz:

Π̂j = cj ρ̂
−1/2Q̂j ρ̂

−1/2, (7)

where Q̂j is a positive operator with unit trace, and hence
cj represents the probability of occurrence of outcome ωj ,
cj = P (ωj). With this definition equation (4) becomes

P (ρ̂j |ωj) = pjTr(ρ̂−1/2ρ̂j ρ̂
−1/2Q̂j)

= pjTr(ρ̂j ρ̂
−1)Tr(ρ̂′jQ̂j) (8)
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where ρ̂′j = ρ̂−1/2ρ̂j ρ̂
−1/2/Tr(ρ̂j ρ̂

−1). ρ̂′j and Q̂j are both
positive, trace-1 operators, and thus can be thought of as
density operators. P (ρ̂j |ωj) is therefore maximised if Q̂j

corresponds to the state with which ρ̂′j has largest overlap,
i.e. is a projector onto the pure state

Q̂j = |λ′max
j 〉〈λ′max

j |, (9)

where |λ′max
j 〉 is the eigenket of ρ̂′j corresponding to its

largest eigenvalue λ′max
j . The limit is then given by

[P (ρ̂j |ωj)]max = pjTr(ρ̂j ρ̂
−1)λ′max

j . (10)

We can also easily find the corresponding POM element
by applying the transformation in equation (7):

Π̂j = cj ρ̂
−1/2|λ′max

j 〉〈λ′max
j |ρ̂−1/2. (11)

If the state ρ̂j is pure then this simplifies to

Π̂j ∝ ρ̂−1ρ̂j ρ̂
−1. (12)

Although the optimal measurement is not uniquely de-
fined — some arbitrariness remains in the choice of con-
stants of proportionality — the maximum confidence
strategy is completely specified by the above. The strat-
egy is defined by the criterion that whenever we iden-
tify state ρ̂j , we do so as confidently as is possible. The
fact that it is always possible to construct a measurement
which achieves this maximum confidence for each state
in a given set is precisely because the optimality of the
POM elements is independent of their respective weights.
Furthermore, as the elements are treated completely inde-
pendently in the derivation it is clear that the optimality
of a given element Π̂j is independent of how we choose
to construct the other elements in the POM to satisfy
the completeness relation. Consider therefore the quan-
tum state filtration problem — the question of whether
the system is in state ρ̂j or simply any one of the other
possible states {ρ̂i}, i �= j. This may seem less demanding
than the problem of discriminating between all the states
equally. Indeed in the minimum error approach, the prob-
ability of making an error in the filtration problem can
be smaller than that in the corresponding discrimination
problem [17]. It is clear from the argument above however,
that in the maximum confidence approach, the confidence
in identifying state ρ̂j cannot be increased by considering
this more restrictive problem. The limit in equation (10)
is dependent only on the geometry of the set. In this sense
the limit is a measure of how distinguishable ρ̂j is in the
given set.

If the states {ρ̂i} are linearly independent, the limit
is unity and the state can be distinguished without er-
ror. Thus unambiguous discrimination is an example of a
maximum confidence measurement. In unambiguous dis-
crimination the constants of proportionality cj are often
chosen to minimise the probability of occurrence of the
inconclusive result, although this may not always be the
most suitable criterion. For example, in the case of two

non-orthogonal states, if the a priori probability of occur-
rence for one of the states is sufficiently small, the mea-
surement which minimises the probability of obtaining the
inconclusive result never identifies this state [30]. Thus if
we wish to have at least some probability of identifying
each state, we may be prepared to accept an inconclusive
outcome which occurs more often than is strictly neces-
sary. For a maximum confidence measurement to discrimi-
nate between states of an arbitrary set, we also need some
other criteria to choose the constants of proportionality. In
some cases, as with unambiguous discrimination, we may
choose to minimise the probability of occurrence of the in-
conclusive outcome [11]. Indeed, for a linearly dependent
set the number of operators Π̂j will be greater than the
dimensionality of the space spanned by the states, and
it may be possible to choose the constants such that an
inconclusive outcome is not necessary. However, it is in-
teresting to note that, unlike unambiguous discrimination,
the quantity [P (ρ̂j |ωj)]max will in general be different for
different states ρ̂j . It may sometimes be useful to choose
a measurement which only ever identifies the states for
which this limit is greater than a certain threshold value.
For example, it was pointed out by Sun et al. [18], that un-
ambiguous discrimination is possible between a pure and a
mixed state of a two-level system (we shall refer to these
as ρ̂pure and ρ̂mixed respectively). This is achieved by a
von Neumann measurement with outcomes corresponding
to states along and orthogonal to ρ̂pure. The result corre-
sponding to a measurement along ρ̂pure is interpreted as
inconclusive, while the result corresponding to the state
orthogonal to ρ̂pure tells us with certainty that the state
was ρ̂mixed. Within the framework of maximum confidence
measurements it is possible to construct a measurement
which sometimes identifies ρ̂mixed with certainty, some-
times identifies ρ̂pure as confidently as possible, and some-
times gives an inconclusive result. However, although the
probability of occurrence of the inconclusive result may
be smaller in this case, we may wish to only allow unam-
biguous results, and thus choose the former. Therefore the
question of how to construct a maximum confidence strat-
egy which is optimal for a given situation is dependent on
the situation and the information desired.

Finally in this section, we compare maximum confi-
dence measurements and minimum error measurements.
As already noted, the two strategies can be thought of
as applying a different optimality condition to the same
quantity — the conditional probability P (ρ̂j |ωj). The
minimum error measurement, however, optimises an av-
erage over all measurement outcomes, and the POM el-
ements must always form a complete set (clearly there
will never be an inconclusive outcome, as if this were the
case the expression in equation (5) could be increased
by the addition of a term of the form P (ω?)P (ρ̂j |ω?)).
As a result, finding the optimal minimum error measure-
ment is in general a difficult problem. In fact, although
the necessary and sufficient conditions which the optimal
measurement must satisfy are known [6,7], the measure-
ment itself is known only in a limited number of spe-
cial cases [5,7,31–34]. As we have seen, the maximum
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confidence measurement will in general have an inconclu-
sive outcome. In the special case where the maximum con-
fidence is the same for all states in a set, and the POM
elements in equation (11) form a complete set, it may be
seen that the two strategies coincide. More generally, it
is clear from examination of equation (5) that a limit to
this quantity is given by the largest value of the maximum
confidence for a given set.

In certain symmetric cases the square root measure-
ment [31,35], given by

Π̂j = pj ρ̂
−1/2ρ̂j ρ̂

−1/2, (13)

is the optimal minimum error measurement. Interestingly,
the maximum confidence POM elements have a similar
form to the above, but the square root measurement has
the advantage that it is always possible to form a POM
from these elements as

∑

j

Π̂j = ρ̂−1/2ρ̂ρ̂−1/2 = Î. (14)

It has proved useful, in the absence of a general formula
for the minimum error POM to investigate what informa-
tion such a measurement can provide about a system in
one of the states {ρ̂j}. Indeed this measurement is consid-
ered a ‘pretty good’ measurement even in cases where it
is not optimal [34,35]. As the maximum confidence POM
elements will not always form a complete measurement,
elements of this form cannot in general be applied to the
minimum error problem. The exception is when ρ̂ ∝ Î,
and the states are all pure, in which case the square root
measurement and the maximum confidence measurement
coincide.

3 Experimental design

3.1 Outline of experiment

Our experiment was designed to discriminate with max-
imum confidence between three equiprobable (pi =
1/3, i = 0, 1, 2) symmetric polarisation states given by
ρ̂i = |Ψi〉〈Ψi| where

|Ψ0〉 = cos θ|R〉 + sin θ|L〉,
|Ψ1〉 = cos θ|R〉 + e2πi/3 sin θ|L〉,
|Ψ2〉 = cos θ|R〉 + e−2πi/3 sin θ|L〉, (15)

and |R〉, |L〉 denote right and left circular polarisation
states respectively. This example was considered in [11]
for a general two-level system with orthonormal base kets
|0〉, |1〉. For our choice of |R〉, |L〉 as basis states, the
input states correspond to elliptical polarisations lying
on the same latitude of the Poincaré sphere [36] (see
Fig. 1). In terms of the horizontal and vertical polar-
isations (|H〉, |V 〉), we define |R〉 = (i|H〉 + |V 〉)/√2,
|L〉 = (|H〉 + i|V 〉)/√2.

We will first outline the optimal measurement, and
then discuss how this measurement can be implemented

R

H

V

L
Fig. 1. (Colour online) Poincaré sphere representation of
states. The north and south poles correspond to right (R) and
left (L) circular polarisation respectively, while linear polarisa-
tions lie in the equatorial plane. The input states (red - lying
in the northern hemisphere) and the states associated with
the outcomes of the optimal maximum confidence (green - in
the southern hemisphere) and minimum error (blue - on the
equatorial plane) POMs are shown.

optically. For this set the a priori density operator, ρ̂ =
cos2 θ|R〉〈R|+sin2 θ|L〉〈L|, is diagonal in the |R〉, |L〉 basis,
and it is straightforward to calculate the optimal POM
elements using equation (12). Thus the POM elements
achieving maximum confidence are given by Π̂i ∝ |φi〉〈φi|,
where

|φ0〉 = sin θ|R〉 + cos θ|L〉,
|φ1〉 = sin θ|R〉 + e2πi/3 cos θ|L〉,
|φ2〉 = sin θ|R〉 + e−2πi/3 cos θ|L〉. (16)

The confidence that ρ̂j was indeed present when outcome
ωj is obtained may then be written:

P (ρ̂j |ωj) =
|〈φj |Ψj〉|2∑
i |〈φj |Ψi〉|2 , (17)

and has the value 2/3 for all j = 0, 1, 2. The states |φi〉 are
the reflection of the input states in the equatorial plane
of the Poincaré sphere, and are shown in Figure 1. This
corresponds to a measurement with outcomes associated
with elliptical polarisations with opposite handedness to
the input states.

Following [11], we choose the constants of proportion-
ality such that the probability of occurence of the incon-
clusive result is minimised. Thus our optical apparatus
was designed to implement the POM given by:

Π̂i = (3 cos2 θ)−1|φi〉〈φi|, i = 0, 1, 2,

Π̂? = (1 − tan2 θ)|R〉〈R|, (18)
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where Π̂? denotes the POM element associated with the
inconclusive result. The probability of obtaining this result
is P (?) = cos 2θ. It can be seen that the inconclusive result
is equally likely to occur for any of the input states, and
thus gives no information about the state.

For comparison purposes, we note that the minimum
error measurement for this set is given by the square root
measurement discussed above, and may be written Π̂i =
(2/3)|φME

i 〉〈φME
i | where

|φME
0 〉 =

1√
2
(|R〉 + |L〉)

|φME
1 〉 =

1√
2
(|R〉 + e2πi/3|L〉)

|φME
2 〉 =

1√
2
(|R〉 + e−2πi/3|L〉). (19)

These are the projections of the input states onto the equa-
torial plane of the Poincaré sphere, and are also shown in
Figure 1. Thus the outcomes of this measurement are each
associated with the linear polarisation specified by the ori-
entation of the major axis of the polarisation ellipse of the
corresponding input state. For this measurement the con-
fidence figure of merit may be written in a similar form to
that in equation (17) and is given by (1 + sin 2θ)/3 for all
input states.

The optical network used to realise this measurement
is shown in Figure 2. Quarter waveplates (QWP) and half
waveplates (HWP) are used to perform unitary transfor-
mations, while polarising beamplitters (PBS) are used to
separate orthogonal modes. POMs require an expansion of
the Hilbert space beyond that of the states of interest [29].
The use of an interferometer in our set-up provides four
orthogonal modes which can then be separated at PBS3-
5 to realise a four outcome measurement. Note that the
input states are states of a two-level system, and that the
extra two orthogonal modes are provided by the vacuum
input to PBS2, and it is this that provides the Naimark
extension of the Hilbert space. The appropriate mixing
of modes to perform the particular measurement we are
interested in is achieved using HWP4-7 and QWP2-3.

Our design groups together the four outputs in pairs,
so that two orthogonal modes in output arm A corre-
spond to results ω?, ω0, while two in arm B correspond
to results ω1, ω2. Thus the interferometer in our set-up
performs the measurement described by the 2-element
POM {Π̂? + Π̂0, Π̂1 + Π̂2}. The remaining unitary trans-
formations and separation of modes necessary to per-
form the full four outcome measurement are performed by
HWP7, QWP3 and PBS4-5. The photodetectors PD0-2,?
measure the number of photons in the two orthogonal
modes {H , V } incident on each detector. As one of these
modes is always empty, the detectors realise the projec-
tors π̂i = |Hi〉〈Hi| (i = 1, ?) and π̂i = |Vi〉〈Vi| (i = 0, 2).
The mode transformation from the interferometer input
to these detector modes then means that |Hi〉 ∝ |φi〉.

PD0

QWP2
HWP4

HWP5

HWP6

PBS2

PBS3

HWP7 QWP3

PBS4PBS5

PD? PD1

PD2

M2

M1

Arm A Arm B

Upper
arm

Lower
arm

Fig. 2. Optical network to realise the maximum confidence
measurement. PBS2–5 = polarising beamsplitters, HWP4–7 =
zero-order half waveplates, QWP2–3 = zero-order quarter
waveplates, PD0–2, PD? = amplified photodiodes. Dotted lines
represent the vacuum inputs to PBS2,4-5.

3.2 Performing a general two outcome measurement

Before discussing the details of our measurement, it is
useful to first consider how an arbitrary two outcome
measurement on an input polarisation state may be imple-
mented using linear optical elements. The simplest mea-
surement of this kind is a von Neumann measurement
which assigns the input state to one of two orthogonal
modes, and may be implemented using a polarising beam-
splitter [22]. More general two outcome measurements are
possible however, and may be expressed in the POM for-
malism by means of a two-element POM {Π̂A, Π̂B}. Any
such POM may be written

Π̂A = λ0|λ0〉〈λ0| + λ1|λ1〉〈λ1|,
Π̂B = (1 − λ0)|λ0〉〈λ0| + (1 − λ1)|λ1〉〈λ1| (20)

where 0 ≤ λ0, λ1 ≤ 1, and |λ0〉, |λ1〉 represent two or-
thonormal polarisation states. λ0, λ1 (|λ0〉, |λ1〉) are the
eigenvalues (eigenkets) of Π̂A. Any such measurement may
be implemented using an interferometer, as shown in our
set-up. The measurement is completely defined by the
probabilities of obtaining outcomes ωA, ωB for any given
input state, and therefore any optical network realising
these probabilities is a valid implementation of the POM.

It is assumed that the transmitted and reflected beams
at each beamsplitter transit identical optical path lengths.
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We also follow the convention that the orientations of the
waveplates are specified by the angle the fast axis makes
with the horizontal, measured anti-clockwise when viewed
in the direction of propagation. The action of a half wave-
plate at an angle A/2 may then be expressed using Jones
matrix notation [37] as

Λ̂1/2(A/2)
( |H〉
|V 〉

)
=

(
cosA sin A
sinA − cosA

) ( |H〉
|V 〉

)
. (21)

Similarly, the action of the quarter waveplates in our ap-
paratus, which are all oriented at either ±45◦, may be
expressed

Λ̂1/4(±45◦)
( |H〉
|V 〉

)
=

1√
2

(
1 ±i
±i 1

) ( |H〉
|V 〉

)
. (22)

For simplicity, in this discussion we will consider pure in-
put states, and assume for the moment that PBS2-3 trans-
mit |λ0〉 and reflect |λ1〉. Thus for any given input state
|Ψ〉, the components along |λ0〉 and |λ1〉 are separated at
PBS2. HWP5-6 are used to rotate the polarisations in each
arm, so that the magnitude of |λ0〉 in the lower arm, and
|λ1〉 in the upper arm are reduced by factors λ

1/2
0 , λ

1/2
1

respectively. Thus HWP5 should be oriented at γ0/2 =
arccos(λ1/2

0 )/2 and HWP6 at γ1/2 = arccos(λ1/2
1 )/2. The

polarisations are then recombined at PBS3. Thus, the in-
put state

|Ψ〉 = a0|λ0〉 + a1|λ1〉 (23)

where |a0|2 + |a1|2 = 1, evolves to

|Ψ〉 → a0|λ0L〉 + a1|λ1U 〉
→ a0(λ

1/2
0 |λ0L〉 + (1 − λ0)1/2|λ1L〉)

+a1((1 − λ1)1/2|λ0U 〉 − λ
1/2
1 |λ1U 〉)

→ a1e
iφ(1 − λ1)1/2|λ0B〉 + a0(1 − λ0)1/2|λ1B〉

+a0λ
1/2
0 |λ0A〉 − a1e

iφλ
1/2
1 |λ1A〉 (24)

at PBS2, HWP5-6, PBS3 respectively, where we have al-
lowed for a phase φ to be introduced between the arms of
the interferometer. The subscripts U , L refer to the upper
and lower arms of the interferometer, while the subscripts
A, B refer to the output arms A and B, as shown in Fig-
ure 2. The probability that the photon is found in output
arm A or B is given by the modulus squared of the am-
plitude of the state in each arm, and may be written:

P (A) = |a0|2λ0 + |a1|2λ1

P (B) = |a0|2(1 − λ0) + |a1|2(1 − λ1). (25)

Thus the measurement {Π̂A, Π̂B} is realised by this ap-
paratus. Note that, perhaps surprisingly, the probabili-
ties are independent of the phase of the interferometer,
which only affects the polarisation of the output states,
and not their magnitude. Any more complicated measure-
ment may be realised as a series of measurements such
as this one. This design is similar to that of Ahnert and
Payne [38], but has the advantage of requiring fewer opti-
cal elements, and thus is easier to implement.

3.3 Experimental design

In our set-up, Π̂A = Π̂?+Π̂0, Π̂B = Π̂1+Π̂2. The operator
Π̂A is:

Π̂A =
1
3
(̂I+2(1− tan2 θ)|R〉〈R|+tan θ(|R〉〈L|+ |L〉〈R|)).

(26)
so that

Π̂A

( |R〉
|L〉

)
=

(
1 − 2

3 tan2 θ 1
3 tan θ

1
3 tan θ 1

3

) ( |R〉
|L〉

)
. (27)

Diagonalising this gives

λ0,1 = (6 cos2 θ)−1(1 + 3 cos 2θ ±
√

1 + 3 cos2 2θ)
|λ0〉 = cosα|R〉 + sinα|L〉
|λ1〉 = − sinα|R〉 + cosα|L〉, (28)

where cos 2α = 2 cos 2θ/
√

1 + 3 cos2 2θ. The polarising
beamsplitters in our experiment transmit horizontal po-
larisation, |H〉 and reflect vertical polarisation |V 〉. Thus
QWP2 (at 45◦) and HWP4 (at α/2) are used to perform
a unitary transformation from the |λ0〉, |λ1〉 basis to the
|H〉, |V 〉 basis. It is easily verified by comparison of the
matrix representations in the |H〉, |V 〉 basis that up to an
overall phase factor

Λ̂1/2(α/2)Λ̂1/4(45◦) = |H〉〈λ0| − |V 〉〈λ1|. (29)

Following the same reasoning as above we can see that the
interferometer in our set-up transforms the input polari-
sation state |Ψ〉 as follows

|Ψ〉 → ( − eiφ(1 − λ1)1/2|HL〉〈λ1| + (1 − λ0)1/2|VL〉〈λ0|
+ λ

1/2
0 |HU 〉〈λ0| + eiφλ

1/2
1 |VU 〉〈λ1|

)|Ψ〉. (30)

The two desired outcomes in each arm are then realised by
setting HWP7 to β/2 and QWP3 to 45◦, where cos 2β =
(3 cos 2θ − 1)/

√
1 + 3 cos2 2θ. Note that the phase of the

interferometer, which is set to π radians in our apparatus,
determines the polarisation of the output state in each
arm of the interferometer, and therefore does affect these
results. The input state is therefore now transformed to

|Ψ〉 → (
1/

√
2|HB〉((1 − λ1)1/2〈λ1| + i(1 − λ0)1/2〈λ0|)

+1/
√

2|VB〉(i(1 − λ1)1/2〈λ1| + (1 − λ0)1/2〈λ0|)
+|HA〉(λ1/2

0 cosβ〈λ0| − λ
1/2
1 sinβ〈λ1|)

+|VA〉(λ1/2
0 sin β〈λ0| + λ

1/2
1 cosβ〈λ1|)

)|Ψ〉. (31)

After PBS4-5, the |HB〉, |VB〉 components can reach pho-
todetectors PD1, PD2 respectively, while the |HA〉, |VA〉
components reach PD? and PD0. Finally, a little algebra
confirms that the action of the entire apparatus on the
input state may be expressed as follows

|Ψ〉 → |PD1〉(1/
√

3(tan θ〈R| + e−2πi/3〈L|)|Ψ〉)

+|PD2〉(1/
√

3(tan θ〈R| + e2πi/3〈L|)|Ψ〉)

+|PD?〉(1 − tan2 θ)1/2〈R|Ψ〉
+|PD0〉(1/

√
3(tan θ〈R| + 〈L|)|Ψ〉). (32)
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where the photodetector state |PDi〉 represents the detec-
tion of a photon at PDi. Thus

P (ω1|Ψ) = (3 cos2 θ)−1|〈φ1|Ψ〉|2
P (ω2|Ψ) = (3 cos2 θ)−1|〈φ2|Ψ〉|2
P (ω?|Ψ) = (1 − tan2 θ)|〈R|Ψ〉|2
P (ω0|Ψ) = (3 cos2 θ)−1|〈φ0|Ψ〉|2, (33)

as required, and the apparatus realises the desired mea-
surement.

3.4 Experimental details

The maximum confidence measurement outlined above
was performed for 10 values of the parameter θ, rang-
ing from 0◦ to 45◦ in 5◦ steps. The apparatus used in
our experiment is shown in Figure 3. The light source was
an 810 nm laser diode (Laser 2000 PPMT model) run in
CW mode, with a full width half maximum bandwidth
of 0.88 nm and maximum power output of 20 mW. This
was coupled into a single mode fibre to act as a spatial
filter and ensure a well-controlled Gaussian spatial mode
along the beam path. The output beam from the fibre
was collimated using an aspheric lens. This beam was ini-
tially sent through a zero-order half waveplate (HWP1)
followed by a polarising beamsplitter (PBS1) to provide
clean horizontal input polarisation and to act as a variable
attenuator.

Three waveplates were used to prepare each of the
input states in turn. HWP2 was oriented at θ/2 − 45◦,
QWP1 at −45◦ for all input states, and HWP3 at −δ/4
where δ = 0, 120◦,−120◦ for |Ψ0〉, |Ψ1〉 and |Ψ2〉 respec-
tively. Again by comparing the matrix representation in
the |H〉, |V 〉 basis, it may be shown that

Λ̂1/2(−δ/4)Λ̂1/4(−45◦)Λ̂1/2(θ/2 − 45◦) =
(cos θ|R〉 + eiδ sin θ|L〉)〈H | + (sin θ|R〉 − eiδ cos θ|L〉)〈V |,

(34)
and therefore that this combination produces the desired
input state when acting on the input |H〉. Thus θ was
set for each of the input states using HWP2, while the
phase was set using HWP3. This arrangement allowed the
input to be switched easily between the three input states
|Ψ0,1,2〉 by moving only one waveplate (HWP3).

In the measurement section of our apparatus, mir-
ror M1 was mounted on a precision translation stage
(Melles Griot Nanomax-TS 17MAX303), allowing the rel-
ative phase between the arms of the interferometer to
be accurately varied. In order to minimise phase fluctu-
ations, the interferometer was shielded from air currents
by a box, and, when operating in Mach-Zender configura-
tion, the visibility of the interference fringes were regularly
measured to be better than 99% over a period of at least
10 minutes. It was also ascertained that the phase could
be adjusted over a range greater than 2π radians without
affecting the quality of the interference fringes. The phase
could be most accurately controlled by adjusting the hor-
izontal translation axis approximately parallel to the face

PD0

LD

SMF

HWP1 PBS1

HWP2
QWP1
HWP3

QWP2
HWP4

HWP5

HWP6

PBS2

PBS3

HWP7 QWP3

PBS4PBS5

PD? PD1

PD2

M2

M1Phase
adjust

Source

State preparation

Measurement

Fig. 3. Optical network to realise the maximum confidence
measurement. LD = Laser diode, SMF = single mode fibre,
PBS1–5 = polarising beamsplitters, HWP1–7 = zero-order half
waveplates, QWP1–3 = zero-order quarter waveplate, PD0–2,
PD? = amplified photodiodes [27].

of M1 (to give much smaller changes in the position of
M1 for a given rotation of the adjustment knob than was
possible using the translation axis perpendicular to the
mirror face); therefore an extension was made for this ad-
juster to allow the phase to be set from outside the box
containing the interferometer, minimising any disturbance
to the interferometer during phase adjustments.

The photodetectors used were amplified photodiodes
(Thorlabs PDA520-EC) whose linearity and relative cal-
ibration were measured over the relevant range of inci-
dent power to be within 0.1% and 2.5% respectively. The
output voltages of the four photodetectors were displayed
and recorded using a digital oscilloscope (LeCroy Wave-
pro 7100). HWP1 was rotated to attenuate the power in
the transmitted arm of PBS1 to keep the photodetectors
within their linear response range. All the waveplates used
were calibrated to within 0.1◦ and were measured to pre-
serve the purity of the polarisation to better than 1:2000.
The waveplates were held in precision mounts that allowed
the angle of the optic axes to be set to within 0.1◦ with
a repeatability of 0.1◦. The extinction ratios of the beam-
splitters were measured to be approximately 1:200.
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Fig. 4. (Colour online) Graphs show experimental results for the normalised voltages at each detector (registering output
result ωj) as a function of θ for input state: |Ψ0〉, |Ψ1〉 (top, l-r); |Ψ2〉, and the confidence figure of merit calculated from these
results (bottom l-r). Also shown are the theoretical predictions without error (grey dashed lines), and those of a non-ideal model
which takes into account the errors introduced at beamsplitters PBS2 and PBS3 (coloured solid lines). Points correspond to
the experimental results, with red triangles, black squares, green circles, blue diamonds corresponding to PD0, PD?, PD1, PD2
respectively. In the last plot red diamonds, green squares and blue triangles correspond to states |Ψ0〉, |Ψ1〉, |Ψ2〉 respectively,
and the lines indicate the confidence figure of merit for both the maximum confidence (dotted) and minimum error (dashed)
measurement strategies. The data show a clear improvement of the state discrimination over the minimum error case. The shaded
regions indicate the range of values consistent with the non-ideal model, which is explained fully in the text. Experimental errors,
due to fluctuations in the measured voltages, are smaller than the size of the data points.

For the intended measurement, the probability of ob-
taining outcome ωj , j = 0, 1, 2, given input state ρ̂i, i =
0, 1, 2 may be expressed

P (ωj |ρi) = (3 cos2 θ)−1|〈φj |Ψi〉|2

= (1 − cos 2θ)
(

1
6

+
1
2
δij

)
(35)

where δij is the Kroeneker delta. Thus the two results for
which j �= i have the same probability of occurrence, as
expected from the symmetry of the measurement. When
the apparatus was set up to perform the measurement,
this property was used to set the phase of the interfer-
ometer. In practice, at each value of θ, the state |Ψ1〉 was
input, and the phase of the interferometer was set by ad-
justing the position of M1 to minimise the difference be-
tween the outputs at detectors PD0 and PD2. Once the
phase was set, it was possible to cycle quickly through the
three input states by rotating HWP3. The output voltages
were recorded for 10 seconds for each input state. These

data were then averaged, and then normalised by divid-
ing by the total voltage recorded at all detectors for each
input state, so that the data could be interpreted as the
probability that input state ρ̂i gives result ωj . The mea-
surement outcomes depend only on the second order field
correlation functions of the input light, as we look at the
outputs of individual detectors, and not correlations be-
tween them. Thus there is no difference in the results for
a one photon input or for classical light. What we are dis-
criminating is the relative (complex) amplitudes of beams
in two input modes — the two orthogonal polarisations.
In the case of weak classical light, this can be interpreted
as the relative probability amplitudes of a single photon
distributed between the two modes.

4 Results

The results of our experiment [27] are shown in Figure 4.
The first three graphs show the normalised voltages at
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each detector for each input state |Ψ0〉, |Ψ1〉, |Ψ2〉. The the-
oretical probabilities of obtaining outcome ωj, j = 0, 1, 2
given input state ρ̂i were given above in equation (35).
The probability of obtaining outcome ω?, as discussed
previously, is the same for all three input states in each
set, and equal to cos 2θ. These theoretical predictions
are shown alongside our experimental results. These data
were then used to calculate the confidence figure of merit,
shown in the fourth graph in Figure 4. In the experimental
implementation the confidence figure of merit represents
the proportion of the voltage recorded at detector PDi,
i = 0, 1, 2, which was due to the corresponding input state
ρ̂i. Again the theoretical value of 2/3 is also shown on this
graph. For comparison purposes we have also shown the
confidence achieved by the theoretically optimal minimum
error measurement. Experimental errors are due to fluctu-
ations in the voltages over the 10 seconds for which they
were recorded, and are smaller than the size of the data
points.

Modelling of the errors due to the different components
of our apparatus showed that the largest errors were asso-
ciated with the beamsplitters used in the interferometer,
PBS2 and PBS3. Ideally, these beamsplitters transmit all
incident |H〉 and reflect all incident |V 〉. In modelling the
error, we assumed that 0.5% of the intensity of the inci-
dent light leaks into the wrong output port. This level of
error is based on our calibration data, and the polarising
beamsplitters PBS2 and PBS3 are thus modelled by the
following operator:

PBS = |HL〉(ie−iχ
√

0.005〈HL| +
√

0.995〈HU |)
+|VL〉(

√
0.995〈VL| + ieiχ

√
0.005〈VU |)

+|HU 〉(
√

0.995〈HL| + ieiχ
√

0.995〈HU |)
+|VU 〉(ie−iχ

√
0.005〈VL| +

√
0.995〈VU |) (36)

where χ is the phase introduced between the intended and
erroneous components. No phase information was avail-
able, and this was therefore left as a parameter in our
model. The form of the above operator is chosen so that
for the input in each arm the reflected and transmitted
components have the same phase, both for the intended
and erroneous components.

It was found that the predictions of the non-ideal
model for the probabilities of obtaining each outcome gave
best agreement with our data for χ = π/2, corresponding
to the case in which all the transmission and reflection co-
efficients are real. These predictions are shown alongside
our results in Figure 4. However there is little change in
the predictions of the non-ideal model for these probabil-
ities for π/3 ≤ χ ≤ 2π/3. The predictions for the confi-
dence figure of merit do vary within this range however,
and the full range of values for which the non-ideal model
is consistent with our raw data are shown. The remaining
differences between the model and our experimental re-
sults are due to second order effects such as errors in the
waveplates and in setting the phase of the interferometer.
Residual errors may also be due to non-pure input states
arising from the bandwidth of the input being greater than
that of the detectors.

The results show a clear improvement in the confidence
figure of merit over the corresponding minimum error mea-
surement. This is most evident in the range 10◦ ≤ θ ≤ 30◦.
For θ larger than this range, this figure of merit is compa-
rable for the two strategies. For θ smaller than this range,
the input states are very close together, and distinguish-
ing between them is more difficult. Experimental errors
are therefore more significant in this region, as can be
seen from our non-ideal theory plot.

5 Conclusion

In the problem of discriminating between non-orthogonal
quantum states, the maximum confidence measurement
allows us to be as confident as possible that if we in-
fer from the measurement result that a given state was
present, that state was indeed present. This confidence
is maximised for all states in a given set, independent of
the frequency with which any given result occurs. There-
fore maximising the confidence measure does not define a
unique strategy. Moreover, it is sometimes necessary to in-
clude an inconclusive outcome in order to form a complete
measurement. The maximum confidence measurement has
the advantage that it is possible to write down an analytic
solution for the optimal POM elements for an arbitrary set
of states. This is not usually possible for other strategies.

We have demonstrated a maximum confidence mea-
surement experimentally for a set of three equiprobable
symmetric polarisation states. Our results show an im-
provement in the confidence figure of merit over the opti-
mal minimum error measurement for the same set.
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